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Abstract. Over the past decades, the IAU has repeat-
edly attempted to correct its definition of the basic fun-
damental argument used in the ephemerides. Finally, they
have defined a time system which is physically possible,
according to the accepted standard theory of gravitation:
TCB (“Barycentric Coordinate Time”). Ironically, this
time scale is mathematically and physically equivalent to
Teph, the time scale that has been used by JPL and by
MIT (the group later went to CfA) in their ephemeris cre-
ation processes since the 1960’s. TCB differs from T¢pp, by
only a constant offset and a constant rate. As such, TCB
provides an equivalent alternative to T,pp, but it does not
allow increased accuracy as others have implied.
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1. Introduction

Throughout the time since the 1960’s, the basic ephemeris
creation processes, at JPL and MIT/CfA, have remained
similar to each other and have remained basically un-
changed: the basic equations of motion are unaltered, and
the implied definitions of the relevant parameters remain
the same. (See, e.g., Ash et al. 1967; Devine 1967; Stan-
dish et al. 1992.) In particular, the independent variable of
the ephemerides has remained unchanged. At MIT/CIA,
this time has been properly referred to as “CT” (Coordi-
nate Time); at JPL it has been (somewhat erroneously)
referred to at first as “ET” (Ephemeris Time) and then
later as “TDB” (Barycentric Dynamical Time). Neverthe-
less, the usage of the basic time-scale in both ephemeris
programs has been essentially the same; the independent
variable has been treated as a coordinate time.

This paper shows that the independent variable in the
JPL and CfA ephemerides (hereafter referred to in this
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paper as “T,,,”) is physically and mathematically equiv-

alent to the IAU 1994 definition of TCB (Barycentric Co-
ordinate Time), differing by only an offset and a constant
rate.

The JPL and MIT/CfA ephemeris improvement pro-
cess, used since the 1960’s, is briefly discussed in Section
2. In Section 3 it is shown, incidentally, why T,pp is not
equal to ET or to TDB. Section 4 describes the time trans-
formation between two different times in the solar system,
and the computation of the transformation is described in
Section 5. The usage of TCB and of T, is described in
Section 6; the scaling of the ephemerides in order to fit
the chosen coordinate time is described in Section 7; the
conclusions are given in Section 8.

2. The History of Modern Ephemerides

In the 1960’s, the program of ephemeris development be-
gan at JPL, because existing ephemerides were not accu-
rate enough for spacecraft navigation. A group at MIT,
now at the Harvard-Smithsonian Center for Astrophysics
(CfA), had also initiated such an ephemeris program for
support of solar system observations and resulting scien-
tific analyses. By the early 1970’s, the ephemerides from
JPL and MIT had become the world’s standards; since
1984, JPL’s DE200 has been the basis of the published
ephemerides from all of the major almanac offices. The
ephemerides have also served for spacecraft navigation,
mission planning, reduction and analysis of the most pre-
cise of astronomical observations, and for the testing of
the various proposed alternative theories of the laws of
gravitation.

The basic ephemeris creation processes at JPL and at
MIT/CfA have not been altered since the 1960’s. Since
that time, both programs have been characterized by the
following features:

— the equations of motion represent the currently ac-
cepted laws of gravitation, including relativistic terms
expressed through order 1/c? (see, e.g., Newhall et al.
1983),



servable effects in the motions,

— the ephemerides are produced by a numerical integra-
tion of the equations of the motion governing the ma-
jor bodies of the solar system (The choice of using nu-
merical integration was inevitable, for analytical theo-
ries cannot meet the accuracies demanded by modern
spacecraft navigation or by modern-day precision solar
system studies.), and

— the accuracy of the actual integration program has
been validated to an order of magnitude smaller than
that of any observable effect (a necessity for proper
ephemeris adjustment).

With these features, the ephemerides approximate a
system which is physically possible somewhere in the uni-
verse, according to the accepted standard theory of gravi-
tation. Inaccuracies due to integration error, truncation of
the relativistic part of the equations of motion, and inten-
tional omission of small perturbing forces have been kept
to a level below that of observational significance. How
closely the ephemerides resemble our own solar system
depends more upon the accuracy of the initial conditions
of the integration. In turn, the accuracy of the initial con-
ditions depends upon how well they are adjusted by the
least squares process of fitting the ephemerides to precise
astrometrical observations of the sun, moon and planets.

3. Tepn, the Time Used in Ephemeris Creation

The independent variable of the equations of motion, used
by JPL and by CfA, is referred to in this paper as “Tepp”.
In the past, T,pn has been referred to at JPL, first, as
“ET”, and then, as “TDB”. However, the use of either of
these terms for “T¢p,” is incorrect. Even though the inten-
tion was to make ET and TDB the independent variable
in the equations of motion (i.e., a smooth-flowing, coor-
dinate time), the unfortunate definitions of ET and TDB
confused this concept with their practical realizations:

— ET : As initially defined, ET was the independent vari-
able of the existing planetary and lunar theories (see
Expl. Suppl. 1961, pp. 66-71); this is a fundamentally
different definition from the independent variable in
the fundamental equations of motion. ET, then, is sub-
ject to the inadequacies of those (analytical) theories.

— TDB : In 1976, the basic time scale was chosen to be
of terrestrial origin (TAI or TDT), and TDB was then
defined to differ from TDT by only periodic terms (see
Guinot and Seidelmann 1988). Such a relation yields
a time scale which is physically impossible. The inten-
tion was to remove a secular drift from the difference,
TDB-TDT; however, the remaining difference cannot
be characterized by merely periodic terms.

— Tepn : It is this quantity, as used by JPL and MIT/CfA
in their ephemeris programs, that has always been
what ET and TDB were intended to be.

Tepn is approzimately equal to them in value, but not
exactly. On the other hand, as will be shown, T, is
mathematically and physically equivalent to the newly-
defined TCB (see Seidelmann and Fukushima 1992), dif-
fering from it by only an offset and a constant rate.

4. Time Transformations

Let T be a coordinate time; i.e., the independent variable
of the equations of motion governing the bodies of the
solar system. Arbitrary clocks in the solar system will run
at rates different from 7T, including, of course, clocks on
or near the surface of the earth. The difference in the rate
of T;, the time kept by an arbitrary clock, and the rate of
T is given by the expression,
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where U; is the gravitational potential at clock due
to the masses of the bodies in the solar system (including
the earth), and v; is the clock’s solar-system barycentric
velocity.

1

Equation 1 assumes that 7; and T are measured in
the same inherent units (e.g., SI seconds). However, one
may also consider T; and T to be measured in different
units; this could be expressed by multiplying the right
side of Equation 1 by a constant factor, K. Integration of
Equation 1, with K included, yields

T v?
T-T= (K-1)(T-To) - K | —(U+%)dt[2]
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where it is assumed that the two times are synchronized
at Ty so that T; =T at Tg.

The difference between T representing TCB and T rep-
resenting T,pp, is entirely determined by merely the value
of K. Mathematically and physically, any choice for the
constant, K, is valid.

If it is assumed for the moment that T; represents “Ter-
restrial Time” (TT, or, formerly, TDT), then

— for K =1, T in Equation 2 becomes TCB. For a clock
on or near the geoid, the difference, TT-TCB, con-
tains a large linear drift (0.5 seconds/year) as well as
a relatively small, quasi-periodic signature — mainly
an annual term with amplitude of 1.6 milliseconds of
time.

— On the other hand, as shown below, one can allow K to
be set automatically by having T' &~ TT. In this case,
K — 1 becomes some sort, of mean value of the integral,
and T in Equation 2 becomes T,pp, the independent
variable used by JPL and CfA for their ephemerides
throughout the past many years.



of the astronomical community: the difference, T, — TT,
is often ignored, since the two time scales differ by no more
than 2 milliseconds of time. Such an approximation is not
valid, however, when considering TCB - TT: the large lin-
ear drift amounts to 0.5 seconds/year.

5. Computing T—TT

The integral of Equation 2 can be evaluated numerically,
using the trapezoidal rule or something similar of higher
order, with the integrand computed straight from the plan-
etary and lunar ephemerides. However, since the integrand
is observer—dependent, it would be necessary to evaluate
the equation for each different clock. Clearly, this is un-
desirable; however, it is necessary for clocks far from the
geoid: GPS satellites, interplanetary spacecraft, rotations
of planets, etc.

For clocks on or near the geoid, where T; represents
TT, there is an alternative to integrating Equation 2 for
each different clock. One may separate the integrand into
an observer—dependent part and an observer—independent
part: an approximation whose error is below 1 nanosec-
ond for observers on or near the earth’s surface. Then,
the observer—dependent part can be integrated analyti-
cally (Thomas 1975) so that Equation 2 becomes
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where the subscript i again denotes the barycentric ob-
server, the subscript E denotes the geocenter, and the
potential Ug includes the potential from all the bodies

except the earth.

— The first term is small and quasi-periodic, but valid
only for observers reasonably near the surface of the
earth; i.e., near the geoid. Since its amplitude is less
than about 2 microseconds of time, the error intro-
duced by the observer’s not being exactly on the geoid
is negligible.

— The second term provides the linear difference between
a clock on the geoid and a clock at the geocenter:
Lg = Wy/c?, where W, is the potential of the geoid.
In practice, since the observing clocks are not located
exactly on the geoid, the rate of each clock is adjusted
so that, on the average, it maintains the TAI or TT
time-scale.

— The third term is in-dependent of the observer; it may
be computed once over the time-span of a given eph-
emeris and then stored for subsequent interpolation.
However, this is not necessary, since analytical expres-
sions for T — T are now available, accurate to the
nanosecond level (Fukushima 1995).

matically in order to have T' =~ TT, as described below.

At JPL, the third term of Equation 3 has been approx-
imated using, in turn, the expressions from Moyer (1971),
Moyer (1981), Hirayama et al. (1987), and presently from
Fairhead and Bretagnon (1990), the latter two as improved
by Fukushima (1995). These analytical formulae express
the integral of only the difference between Ug +v% and its
mean value, Lo. As such, the analytical formulae express
the last two terms of Equation 3 with 1 — K being equal
to —L¢ and T being Tepp.

6. The Usage of TCB or T.pn

When evaluating Equation 3 with T,,,, one may either
— ignore the second and fourth terms of Equation 3 and
use one of the analytical expressions for the quasi-
periodic part of the third term, or
— evaluate all four terms, using the numerical quadrature
of the integral and setting 1—K = —(Lg+L¢) in order
to remove all secular drift.
On the other hand, if operating in TCB, one may either
— use the numerical quadrature of the integral and set
K=1,o0r
— use one of the analytical expressions for the quasi-
periodic part of the third term and set 1 — K = L¢ in
order to complete the full integral.
Determination of the rate (L¢) can be done by fitting
the analytical formulae to a numerical quadrature of the
integral in Equation 3, as was done by Fukushima (1995).

7. Automatic Ephemeris Scaling

In the ephemeris creation process, the system automati-
cally adjusts itself to fit the choice of units, including the
units of T,,, as determined by the choice of K. This is
similar to physics, but not identical.

— In physics, one chooses the units of distance, mass,
and time; the numerical value of G, in those units, is
then determined by observation; its numerical value
is automatically adjusted in order to give a consistent
system: one which agrees with the laws of motion and
with the observations of measurement. Further, now
that the meter is defined in terms of the speed of light
(c = 299792458m /sec), the unit of distance is effec-
tively expressed in time units.

— In astronomy, one adopts the gaussian gravitational
constant, the mass of the sun, and the unit of time
determined by the choice of K, (or equivalently, by
the computation of T—TT in Equation 3). The unit of
length, the au, is related to the units of time by the
relation, au[sec] = S[E2]/c[E2] where S is the scale

factor. The adjustment of the unit of length by use of
the parameter S is analogous to the adjustment of G
in physics.



3 is computed such that 7-TT remains small, and consis-
tency is maintained via the scale factor, S; in this manner,
the value of K is automatically determined such that there
is no drift between T and TT.

8. Conclusions

JPL and CfA (formerly MIT) ephemeris creation pro-
grams have been producing the world’s standards for three
decades. Both of these programs have used for their inde-
pendent variable, a coordinate time which is physically
and mathematically equivalent to the TAU’s recently in-
troduced TCB, differing only by a constant offset and a
constant rate. Operating in either of these time systems
produces identical results, except for a scaling factor which
may be used to easily convert from one system to the
other.

The IAU introduction of TCB does not allow greater
accuracy, as has been implied by Seidelmann and Fu-
kushima (1992) and by Soffel and Brumberg (1991). It
presents an equivalent alternative to the system that has
been used for decades at CfA and at JPL.
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